Pearson Edexcel

Mark Scheme (Results)

Summer 2019

Pearson Edexcel International GCSE
In Mathematics A (4MA1)
Paper 2HR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2019
Publications Code 4MA1_2HR_1906_MS
All the material in this publication is copyright
© Pearson Education Ltd 2019

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.

Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.

- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Types of mark
- M marks: method marks
- A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)
- Abbreviations
- cao - correct answer only
- ft - follow through
- isw - ignore subsequent working
- SC - special case
- oe - or equivalent (and appropriate)
- dep-dependent
- indep - independent
- eeoo - each error or omission
- No working

If no working is shown then correct answers normally score full marks If no working is shown then incorrect (even though nearly correct) answers score no marks.

- With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.
If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.
Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.
If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work. If there is a choice of methods shown, the method that gains the least marks should be marked.
If there is no answer on the answer line then check the working for an obvious answer.

- Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.
It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.
Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

- Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths

Apart from Q2, 17, 18d, 20, \& 24 (where the mark scheme states otherwise) the correct answer, unless obtained from an incorrect method, should be taken to imply a

Question		Working	Answer	Mark	Notes	
1	(a)		$x>-3$	1	B1	Accept - $3<x$
	(b)	$4 y-y \leq 8+13$	$y \leq 7$ oe	2	M1 A1	Arranging y 's on one side and the numbers on the other side. (allow $4 y-y=8+13$ oe or $4 y-y<8+13$ oe or $4 y-y>8+13$ oe or $4 y-y \geq 8+13$ oe) Allow $y \leq 21 / 3$
						Total 3 marks

Question		Working	Answer	Mark 2	Notes	
3	(a)		$-5,5,5,-5$		B2	All 4 correct values If not B2 then B1 for 2 or 3 correct values
	(b)		Fully correct curve	2	$\mathrm{M} 1$ A1	Plotting at least 6 points correctly from their table dep on B1 in part(a) Do not accept horizontal line at top of curve or straight line segments
						Total 4 marks

4	(a)	$40 \div 16 \times 12$ oe	30	2	M1 A1	$40 \times \frac{12}{16}$ oe	
	(b)	$525 \div 100^{2}$	0.0525 oe	2	M1 A1	$\begin{aligned} & \frac{525}{100^{2}} \\ & \text { Accept } 5.25 \times 10^{-2} \\ & \hline \end{aligned}$	
							Total 4 marks

$\mathbf{5}$			M1 $(x+4)(x-9)$	For $(x+a)(x+b)$ where $a b=-36$ and a andare integers Ignore extension to roots $x=-4 \& 9$	

$\mathbf{6}$		$\mathrm{P}(\mathrm{mint}=) 1-(0.35+0.32+0.12)\{=0.21\}$ $\mathrm{P}($ strawberry or mint $=) 0.32+{ }^{\prime} 0.21 "$	M1 M 1 A1	Or a correct equation summing to 1 Dep Allow $0.53 / 1$	0.53 oe

7		20	3	M1	Or $\frac{6}{11} \times 55(=30)$ or $\frac{2}{11} \times 55(=10)$
				M1	Or M2 for Won = 30 and Lost $=10$ (can be seen in a ratio $30: 15: 10$)
				A1	
					Total 3 marks

Question		Working	Answer	Mark	Notes	
8	(a)		7875	2	M1 A1	$3^{2} \times 5^{3} \times 7$ oe or correct Venn diagram
	(b)		3898125	2	M1 A1	$3^{4} \times 5^{4} \times 7 \times 11$ oe or correct Venn diagram
						Total 4 marks

9	(a)		8.4×10^{5}	1	B1		
	(b)	$\frac{60000000}{0.08} \text { or } 750000000 \text { oe (e.g } 0.75 \times 10^{9)}$	7.5×10^{8}	2	$\begin{aligned} & \hline \mathrm{M} 1 \\ & \mathrm{~A} 1 \\ & \hline \end{aligned}$	M1 for 60000000 or 0.08	
							Total 3 marks

10	150000×0.82^{3}	82705	3	M2	If not M2 then M1 for 1st year e.g $150000 \times 0.82(=123000)$ or $150000 \times 0.18(=27000)$ SC B1 for $\begin{array}{\|l} 150000 \times 1.18(=177000) \text { or } \\ 150000 \times 1.18^{3}(=246454.8) \text { or } \\ 150000 \times 0.54(=81000) \text { or } \\ 150000 \times 0.46(=69000) \\ \text { Accept } 82705.2 \\ \hline \end{array}$	
						Total 3 marks

11	Gradient $=(-) 4 \div 2$ oe	$y=-2 x-1$ oe	3	M1 A2	Correct method to work out the gradient (\pm) accept $4 \div 2$ oe or " m " $=2$ If not A2 then A1 for $L=-2 x-1$ or $-2 x-1$ or $y=2 x-1$ or $y=-2 x+c$
					Total 3 marks

13	(a)	Plotting points from table at ends of interval $(40,6),(50,20),(60,56),(70,84),(80,95)$, $(90,100)$ Points joined with curve or line segments	Correct cf diagram	2	M1 A1	$\pm^{1} / 2$ sq (at least 5 points plotted correctly) Or all points plotted consistently within each interval at the correct heights Accept of graph which is not joined to $(30,0)$
	(b)	Use of graph at 50	58-59	2	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of graph at 50 walkers No working shown and answer is within 58-59 award M1A1
	(c)	86 or 87 or 88 indicated on graph or stated 100 - "86" or 100 - " 87 " or 100 - " 88 "	$\frac{12}{100}$ oe $\frac{13}{100}$ oe $\frac{14}{100}$	3	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of their graph at 72 minutes Dep e.g. 12, 13 or 14 walkers $0.12 \rightarrow 0.14$ inc, oe
						Total 7 marks
14	(a)	$x^{9} y^{6}$	$x^{9} y^{6}$	2	B1B1	Allow B1 if $\left(x^{3} y^{2}\right)^{3}$ or $\left(x^{36} y^{24}\right)^{0.25}$ seen on answer line
	(b)	$3^{n}=\frac{3^{x}}{3^{2 \nu}}$	$n=x-2 y$	2	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & \hline \end{aligned}$	for a correct first step e.g. $3^{2 y}$ or $3^{-2 y}$
						Total 4 marks

Question	Working	Answer		Notes	
15	$A B D=98^{\circ} \div 2\left(=49^{\circ}\right) \text { or } A B C=90^{\circ}$ Angle at centre / middle is twice angle at circumference Angle in a semicircle / from a diameter is $90^{\circ} /$ right angle $D B C=(90-49)=41$	41°	4	$\begin{aligned} & \hline \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Correct angle stated or seen on diagram Dep M1 Dep M1 Correct answer + no reasons $=$ M1A1
	$\begin{aligned} & 180-98\left(=82^{\circ}\right) \\ & O A D=82 \div 2\left(=41^{\circ}\right) \end{aligned}$ Base / bottom angles in an isosceles triangle are equal $D B C=41^{\circ}$ Angles in the same segment / from the same chord ($D C$) are equal Alt:	41°		$\begin{aligned} & \text { M1 } \\ & \text { B1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Correct angle stated or seen on diagram Dep M1 Dep M1 Correct answer + no reasons $=$ M1A1
	DOC $=180-98\left(=82^{\circ} \cdot \cdots\right.$ Angle on a straight line $=180^{\circ}$ $D B C=41^{\circ}$ Angle at centre / middle is twice angle at circumference	41°		$\begin{gathered} \mathrm{M}_{1}- \\ \mathrm{B} 1 \\ \mathrm{~B} 1 \\ \mathrm{~A} 1 \end{gathered}$	 Dep M1 Dep M1 Correct answer + no reasons = M1A1
					Total 4 marks

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 16 \& (a) \& $y=\frac{k}{x^{2}} \quad$ condone proportion symbol in place of $=$ $16=\frac{k}{1.5^{2}}$ or $9=\frac{k}{2^{2}}$ or $4=\frac{k}{3^{2}}$ or $2.25=\frac{k}{4^{2}}$ \& $y=\frac{36}{x^{2}}$ \& 3 \& M1
M1

A1 \& | Setting up a correct equation " k " $\neq 1$ |
| :--- |
| Using the values from the table to find the value of the constant or " k " $=36$ $\frac{36}{x^{2}}=M 2 \text { AO }$ |

\hline \& (b) \& $x^{2}=\frac{36}{144}$ or $x=\sqrt{ }\left(\frac{36}{144}\right)$ \& \& \& M1 \& Substituting $y=144$ into the correct equation and making x^{2} or x the subject.

\hline \& \& \& 0.5 oe \& 2 \& A1 \& cao

\hline \& \& \& \& \& \& Total 5 marks

\hline
\end{tabular}

Question	Working	Answer	Mark	Notes	
17	$\begin{aligned} & \text { (Term } n=\text {) } \frac{1}{2} n(n+1) \text { or } \\ & \text { (Term } n+1=) \frac{1}{2}(n+1)(n+2) \\ & \frac{1}{2} n(n+1)+\frac{1}{2}(n+1)(n+2) \\ & \frac{1}{2}(n+1)(n+n+2)=\frac{1}{2}(n+1)(2 n+2) \text { or } \\ & \frac{1}{2} n^{2}+\frac{1}{2} n+\frac{1}{2} n^{2}+\frac{1}{2} n+n+1 \rightarrow n^{2}+2 n+1 \end{aligned}$	$(n+1)^{2}$ shown	4	M1 M1 M1 A1	Algebraic representation of one of the two consecutive terms in sequence Adding two consecutive terms Factorisation or multiplying out correctly to get to $n^{2}+2 n+1$ Dep on M3
					Total 4 marks

18	(a)			$\frac{3}{4}$ oe	1	B1	
	(b)	$\frac{x-5}{4(x-5)-3}$			2	M1 A1	cao
				$\frac{x-5}{4 x-23}$			
	(c)	$\begin{array}{lll} y=\frac{x}{4 x-3} \text { or } x=\frac{y}{4 y-3} & \\ y(4 x-3)=x & \text { or } & x(4 y-3)=y \\ 4 x y-3 y=x & \text { or } & 4 x y-3 x=y \\ 4 x y-x=3 y & \text { or } & 4 x y-y=3 x \\ x(4 y-1)=3 y & \text { or } & y(4 x-1)=3 x \end{array}$		$\frac{3 x}{4 x-1}$ oe	3	M1 M1 A1	Moving the denominator to the other side of the equation Factorising the variable on one side in a correct expression
	(d)	$\begin{aligned} & \text { Tangent drawn at } x=-0.5 \\ & (G=) 18 \div 3 \text { oe } \end{aligned}$		$5 \rightarrow 7$	3	M1 M1 A1	Drawing a tangent at $x=-0.5$ Correct method to work out the gradient of the tangent at $x=-0.5$ or $x=+0.5$ Dep on $1^{\text {st }} \mathrm{M} 1$ SC B1 B1 for drawing a tangent at $x=+0.5$ and gradient $=-3 \rightarrow-4$
							Total 9 marks

20	3.455 or 3.465 or 6.25 or 6.35 $\frac{6 \times 3.465}{6.25-3.465}$	7.46	3	M1 M1 A1	Accept 3.4649 for 3.465 or 6.349 for 6.35 $\begin{aligned} & \frac{6 \times \mathrm{UB}_{a}}{\mathrm{LB}_{b}-\mathrm{UB}_{a}} \text { where } \\ & 3.46<\mathrm{UB}_{a} \leq 3.465 \text { and } \\ & 6.25 \leq \mathrm{LB}_{b}<6.3 \end{aligned}$ Dep M2 Accept 7.46499 ...
					Total 3 marks

\(\left.$$
\begin{array}{|c|l|l|l|l|l|l|}\hline \text { 21 } & \begin{array}{l}(\text { LSF }) \sqrt{240 \div 540} \text { or } \frac{2}{3} \text { or } \frac{3}{2} \text { or } 1.5 \text { or } 3: 2 \text { or } 2: 3 \\
\left(\frac{2}{3}\right)^{3} \times 2025 \text { oe accept } 0.0 .66 \text { or better for } 2 / 3\end{array} & \begin{array}{c}3 \\
\text { M1 }\end{array}
$$ \& Full method leading to correct answer

A1\end{array}\right]\)| Total 3 marks |
| :--- |

Que	Working	Answer	Mark	Not	
24	$\begin{aligned} & \frac{x-4}{x} \times \frac{x-5}{x-1}=0.7 \\ & 3 x^{2}-83 x+200(=0) \text { oe } \\ & \frac{83 \pm \sqrt{83^{2}-(4 \times 3 \times 200)}}{2 \times 3} \operatorname{or}(3 x-8)(x-25)(=0) \\ & \operatorname{or}(x-83 / 6)^{2}+200 / 3-83^{2} / 36(=0) \end{aligned}$ Alt: $y=$ yellow marbles	25	5	M2 A1 M1 A1	If not M2 then M1 for either $\frac{x-4}{x}$ or $\frac{x-5}{x-1}$ Rearrangement of their quadratic to the form $a x^{2}+b x+c(=0)$ $1^{\text {st }}$ step in solving the correct 3 term quadratic Accept 25 only (dep on M3 if using algebra) If not M2 then M1 for either $\frac{y}{y+4}$ or $\frac{y-1}{y+3}$
	$\begin{aligned} & \frac{-y-}{y+4} \times \frac{y-1}{y+3}=0.7 \\ & 3 y^{2}-59 y-84(=0) \text { oe } \\ & \frac{59 \pm \sqrt{59^{2}-(4 \times 3 x-84)}}{2 \times 3} \text { or }(3 y+4)(y-21) \\ & \text { or }(y-59 / 6)^{2}-84 / 3-59^{2} / 36(=0) \\ & y=21 \\ & 21+4 \end{aligned}$	25		M2 A1 M1 A1	Rearrangement of their quadratic to the form $a y^{2}+b y+c(=0)$ $1^{\text {st }}$ step in solving the correct 3 term quadratic Accept 25 only (dep on M3 if using algebra) Give full marks if $\frac{21}{25} \times \frac{20}{24}=0.7$ seen and $1^{\text {st }} \mathrm{M} 2$ scored NB: SC B1 for completing $1^{\text {st }}$ step in solving incorrect 3 term quadratic
					Total 5 marks
Total for Paper: 100 marks					

